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ABSTRACT

We use new interior models of cold planets to investigate the mass-radius relationships of solid exoplanets, con-
sidering planets made primarily of iron, silicates, water, and carbon compounds. We find that the mass-radius rela-
tionships for cold terrestrialmass planets of all compositionswe considered follow a generic functional form that is not a
simple power law: log10Rs ¼ k1 þ 1

3
log10(Ms)� k2M

k3
s for up toMp � 20 M�, whereMs and Rs are scaled mass and

radius values. This functional form arises because the common building blocks of solid planets all have equations of
state that are well approximated by a modified polytrope of the form � ¼ �0 þ cPn. We find that highly detailed planet
interior models, including temperature structure and phase changes, are not necessary to derive solid exoplanet bulk com-
position frommass and radius measurements. For solid exoplanets with no substantial atmosphere we have also found the
following: with 5% fractional uncertainty in planet mass and radius it is possible to distinguish among planets composed
predominantly of iron or silicates or water ice but not more detailed compositions; with�5%uncertainty water ice planets
withk25%water by mass may be identified; the minimum plausible planet size for a given mass is that of a pure iron
planet; and carbon planet mass-radius relationships overlap with those of silicate and water planets due to similar
zero-pressure densities and equations of state. We propose a definition of ‘‘super-Earths’’ based on the clear distinction
in radii between planets with significant gas envelopes and those without.

Subject headinggs: equation of state — planetary systems — planets and satellites: general

Online material: color figures

1. INTRODUCTION

The growing number and unexpected diversity of recently dis-
covered extrasolar planets have motivated us to study the mass-
radius relationship of solid exoplanets. The central question we
pose is, what can we determine about an exoplanet’s composition
from its mass and radius? The answer to this question requires
numerical models of planet interiors, as well as an understanding
of the current limitations and future prospects of the precision of
planet mass and radius observations.

The growing number of exoplanets includes some with in-
teresting radii. The planet HD 149026b has such a small radius
for its measured mass that the planet must have a core with a
mass of 60Y70M�, or

2
3
of the planet’s total mass (Sato et al. 2005).

Another planet, GJ 436b, is a Neptune-mass planet (Butler et al.
2004) that was recently discovered to show transits (Gillon et al.
2007) and to have a Neptune-like radius (Mp ¼ 22:6 � 1:9 M�
and Rp ¼ 3:95 � 0:35 R�).

The unexpected diversity of exoplanets includes 14 exopla-
nets with Mp sin i < 21 M� (Butler et al. 2004; McArthur et al.
2004; Santos et al. 2004; Rivera et al. 2005; Bonfils et al. 2005,
2007; Vogt et al. 2005; Lovis et al. 2006; Udry et al. 2006; Melo
et al. 2007), including one with Mp ¼ 7:5 M� (Rivera et al.
2005) and another withMp ¼ 5 M� orbiting at the inner edge of
its host star’s habitable zone (Udry et al. 2007). Microlensing sur-
veys have discovered two low-mass planets,�5.5M� (Beaulieu
et al. 2006) and�13M� (Gould et al. 2006) at�2.5 AU from their
parent stars, suggesting that Neptune-mass planets are common. In

one planetary system, the Neptune-mass planet is the most massive
planet in the system (Gould et al. 2006).

Space-based missions provide us with further motivation for our
study.COROT5 (CNES; launched 2006December 27) andKepler6

(NASA; launch date 2008)will search for low-mass exoplanets that
transit their host star. Gaia7 (ESA; launch date 2011) will measure
stellar distances (and hence their radii) precisely, removing a lim-
iting factor in deriving a precise planetary radius. Ground-based
radial velocity techniques are pushing to higher precision and will
enable mass measurements of many of the COROT and Kepler
planets.

To examine what we can determine about an exoplanet’s com-
position from measurements of its mass and radius, we derive
theoretical mass-radius relationships for a wide range of exo-
planet masses. To explore a wide range of masses and composi-
tions, we make a major simplification: we make the approximation
that the planet is at a uniform low temperature. This approximation
of uniform low temperature serves as a practical simplification be-
cause the equations of state (EOSs) are relatively well described at
zero temperature or at 300 K for a wide variety of materials below
200GPa. The full temperature-dependent EOSs for thematerials of
interest are either unknown or highly uncertain at the temperatures
massive solid planets can reach in their interiors and in the pres-
sure range beyond the reach of static compression experiments
(P200 GPa) and the analytical high-pressure laws of plasma
physics (k104 GPa).

We adopt our approach from the foundational work of Zapolsky
& Salpeter (1969), who computed mass-radius relationships for
homogeneous zero-temperature spheres of single elements. We
improve on Zapolsky & Salpeter (1969) by using a more accurate
EOS at pressures P P1000 GPa. We further expand on Zapolsky
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&Salpeter (1969) by consideringmore realistic planetarymaterials,
considering differentiated planets, exploring the effects of temper-
ature on the planet mass and radius, and investigating potential
observational uncertainties on planet mass and radius.

This work complements the highly focused physical models
of low-mass exoplanets offered by other authors. A detailed study
by Léger et al. (2004) focused on water planets and provided a
detailed model of the interior and atmosphere of a 6 M� planet
with an interior composition of 3M� of water, 2M� of a silicate
mantle, and 1M� iron and nickel core (for a description of a water
planet see also Kuchner 2003). Valencia et al. (2006) calculated the
mass-radius relationship for ‘‘super-Earths’’ and ‘‘super-Mercuries’’
(defined in their paper to be 1Y10M� and similar composition to
Earth and 1Y10 Mercury masses and similar composition to Mer-
cury, respectively). Valencia et al. (2006) explore different mineral
compositions of the mantle and core, investigate whether the
planets have solid or liquid cores, and apply their model to GJ 876d
in Valencia et al. (2007a) and to degeneracies of planet interior
composition in Valencia et al. (2007b). Ehrenreich et al. (2006)
model small cold exoplanets to study the microlensing planet
OGLE 2005-BLG-390Lb (Beaulieu et al. 2006). In the past
Stevenson (1982) andmore recently Fortney et al. (2007) and Sotin
et al. (2007) have also investigated mass-radius relationships of
rocky and icy exoplanets.

We take a broader view than these previous studies, using more
approximatemodels in order to investigate planets of awide range
of compositions and masses. We describe our model in x 2 and
the EOSs in x 3. In x 4 we present mass-radius relationships for
homogeneous and differentiated planets and discuss the effects
of phase changes and temperature. In x 5 we describe a generic
mass-radius relationship shared by all solid exoplanets under our
approximation. We discuss the broad consequences of our study
in x 6, followed by a summary and conclusion in x 7.

2. MODEL

We solve form(r), themass containedwithin radius r,P(r), the
pressure, and �(r), the density of a spherical planet, from three
equations: the mass of a spherical shell

dm rð Þ
dr

¼ 4�r2� rð Þ; ð1Þ

the equation of hydrostatic equilibrium

dP rð Þ
dr

¼ �Gm rð Þ� rð Þ
r2

; ð2Þ

and the EOS

P rð Þ ¼ f � rð Þ; T rð Þð Þ; ð3Þ

where f is a unique function for a given material. Different ap-
proximations to the EOS have been derived, and we describe our
choice in detail in x 3. For the majority of the calculations for
solid materials presented here, we neglect the temperature depen-
dence of the EOS and use experimental data obtained at room tem-
perature. The importance of thermal contributions to the pressure is
discussed in x 4.2.2.

We numerically integrate equations (1) and (2) starting at
the planet’s center (r ¼ 0) using the inner boundary condition
M (0) ¼ 0 and P(0) ¼ Pcentral, where Pcentral is a chosen central
pressure. For the outer boundary conditionwe useP(Rp) ¼ 0. The
choice of Pcentral at the inner boundary and the outer boundary con-
dition P(Rp) ¼ 0 define the planetary radius Rp and total mass

Mp ¼ m(Rp). Integrating equations (1) and (2) over and over for
a range of Pcentral provides the mass-radius relationship for a
given EOS.
For differentiated planets containing more than one kind of

material, we specify the desired fractional mass of the core and
of each shell. We then integrate equations (1) and (2) as specified
above, given a Pcentral and outer boundary condition. We switch
from onematerial to the next where the desired fractional mass is
reached, using a guess of the total planet mass. Since we do not
know the total mass that a given integration will yield ahead of
time, we generally need to iterate a few times in order to produce
a model with the desired distribution of material.
We tested our code by trying to duplicate the mass-radius

curves in Zapolsky & Salpeter (1969) using their EOS (Salpeter
& Zapolsky 1967). Our mass-radius curves agreed with those in
Zapolsky & Salpeter (1969) to within a few percent.

3. EQUATIONS OF STATE

An EOS describes the relationship between density, pressure,
and temperature for a given material in thermodynamic equilib-
rium. Because we compute models without temperature depen-
dence, we choose a form of EOS that assumes uniform or zero
temperature. For PP200 GPa we use fits to experimental data,
either the Vinet EOS or the Birch-Murnagham EOS (BME). For
Pk104 GPa, where electron degeneracy pressure becomes in-
creasingly important, we use the Thomas-Fermi-Dirac (TFD) the-
oretical EOS. In between these pressures the EOSs are not well
known and we treat the EOS as described in x 3.3.

3.1. Low-Pressure EOSs: Vinet and Birch-Murnagham

For pressures below approximately 200GPawe rely on exper-
imental data that have been fitted to the common EOS formulae
of either Vinet (Vinet et al. 1987, 1989) or BME (Birch 1947;
Poirier 2000). For a derivation of these EOSs see Poirier (2000).
The Vinet EOS is

P ¼ 3K0�
2=3 1� ��1=3

� �
exp 3

2
K 0
0 � 1

� �
1� ��1=3

� �h i
; ð4Þ

and the third-order finite strain BME is

P ¼ 3
2
K0 �7=3 � �5=3

� �
1þ 3

4
K 0
0 � 4

� �
�2=3 � 1

� �h i
: ð5Þ

For the fourth-order finite strain BME, the term

þ 3

2
K0 �7=3 � �5=3

� � 3

8
K0 �2=3 � 1

� �2

; K0K
00
0 þ K 0

0 K 0
0 � 7

� �
þ 143

9

� �
ð6Þ

is added to equation (5). Here � ¼ �/�0 is the compression ratio
with respect to the ambient density, �0.K0 ¼ �V (@P/@V )T is the
bulk modulus of the material, K 0

0 is the pressure derivative, and
K 00
0 is the second pressure derivative. Themajority of experiments

(from which K0 and K
0
0 are derived) are typically limited to pres-

sures less than 150 GPa and temperatures less than 2000 K.
Both the BME and the Vinet EOSs are empirical fits to ex-

perimental data. The Vinet EOS is considered to bemore suitable
than the BME EOS for extrapolation to high pressures because
the BME is derived from an expansion of the elastic potential
energy as a function of pressure truncated to low orders (Poirier
2000). Where possible we choose the Vinet or BME fit provided
for experimental data according to which fit best matches upwith
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the TFD EOS at high pressures. In one case we used a fourth-
order BME where the term K 00

0 is determined theoretically (see
x 3.3). Table 1 lists the K0, K

0
0, and the type of EOS fit we used

for each material.

3.2. High-Pressure EOS: Thomas-Fermi-Dirac

The TFD theory was derived in the late 1920s as an approximate
way to characterize the interactions of electrons and nuclei. The
electrons are treated as a gas of noninteracting particles that obey
the Pauli exclusion principle and move in the Coulomb field of the
nuclei. Under the assumption that the potential is slowly varying,
a self-consistent solution is derived so that Pauli exclusion pres-
sure balances out the Coulomb forces (Eliezer et al. 2002).

These approximations lead to a comparatively simple descrip-
tion that works for any material and becomes increasingly accurate
at high pressure. For each material, however, there is a pressure
limit below which the TFD model is no longer valid, where the
assumption of a noninteracting electron gas in a slowly varying
potential breaks down. In real materials, the electrons occupy well-
defined orbitals, which leads to chemical bonds and determines
the crystal structure as a function of pressure and temperature.
The TFD theory cannot describe chemical bonds and is insen-
sitive to the arrangements of atoms in a particular structure. At
very high pressure, however, where the kinetic energy dominates
over the Coulomb energy, all these effects become less important
and TFD theory yields an increasingly accurate EOS.

In this paper we use a modified TFD theory developed by
Salpeter & Zapolsky (1967). The authors extended the original
TFD theory by adding a density-dependent correlation energy
term that captures some of the interaction effects of the electrons.
In all of the following TFD calculations, we included the cor-
relation energy correction calculated with fit formulae provided
in Salpeter & Zapolsky (1967).8We also follow this paper for the
description of mixtures of different types of atoms.

Since the TFD theory does not describe chemical bonds, it does
not reproduce the correct zero-pressure density and can even be in
error by up to a factor of 2 or more (Zapolsky & Salpeter 1969;

see Fig. 1). Instead, we rely on experimental data for lower pres-
sure, which are available for almost all materials we consider.

3.3. Intermediate-Pressure EOS and Details
for Specific Materials Used

The pressure range from approximately 200 to 104 GPa is
not easily accessible to experiment nor is it well described by the
TFD EOS. Although shock experiments can reach pressures over
1000 GPa, a substantial contribution to the pressure comes from
the thermal pressure (see x 4.2.2) because thematerial is also heated
under shock compression. When a shock wave passes through a
solidmaterial, its density is only increased by up to a factor of 4. It is
this limited compression ratio that makes it very difficult to obtain
low-temperature EOS data beyond 200 GPa, the range needed to
model planetary interiors. For all materials but H2O in this pressure
regimewe simply use theVinet/BMEEOSup until the pointwhere
it intersects the TFD EOS curve, and the TFD EOS at higher
pressures (see Fig. 1). A more accurate EOS in the intermediate
pressure range 200Y104 GPa demands new theoretical calcula-
tions. Such EOSs are not readily available since there are almost
no applications that require EOSs in this pressure range.

Water ice.—As an example of how to fill this gap, we used
density functional theory to calculate the EOS of water ice in the
phases VIII and X in the pressure range 2Y7700 GPa (Fig. 2 and
Table 2). The theoretical EOS data presented here are in agree-
ment with water ice VII experimental data (Hemley et al. 1987)
in the range 6Y127GPa towithin 3.5% in density for a given pres-
sure. Our Vinet fit to the combined theoretical data for water ices
VIII andXhas parameters �0 ¼ 1460 kgm�3,K0 ¼ 14:3771GPa,
andK 0

0 ¼ 6:57972. This fit deviates from the tabular data in Table 2
by less than 2.5% in density for a given pressure.

At P > 3Y20 GPa water ice is in either phase VII or VIII,
depending on temperature (see the water phase diagram in, e.g.,
Petrenko &Whitworth 1999). The structures of water ice phases
VII and VIII are extremely similar, differing only by the ordering
of the hydrogen atom. This different structure causes a negligible
difference in the EOS, making the experimental water ice VII
and the theoretical VIII EOS comparable. At P ¼ 60 GPa water
ice VII/VIII undergoes a phase change to water ice X. In this struc-
ture, the distinction between covalent bonds and hydrogen bonds
goes away. Instead, the hydrogen atom shifts to the midpoint be-
tween two oxygen atoms, while the hydrogen atoms occupy

TABLE 1

Parameters for the Vinet (V ) or Birch-Murnagham (BME) EOS Fits

Atom or Compound

K0

(GPa) K 0
0

�0
(Mg m�3) Fit

log10PV /T
(GPa) References

C (graphite) ....................................................... 33.8 � 3 8.9 � 1.0 2.25 BME 11.75 1, 2

Fe (�) ................................................................. 162.5 � 5 5.5 � 0.8 7.86 BME . . . 1, 3

Fe (�) .................................................................. 156.2 � 1.8 6.08 � 0.12 8.30 V 13.32 4

FeS ..................................................................... 35 � 4 5 � 2 4.77 BME 13.23 1, 5

H2O (ice VII )..................................................... 23.7 � 0.9 4.15 � 0.07 1.46 BME . . . 6

H2O ( liquid )a..................................................... 2.28 . . . . . . . . . . . . 7

MgO ................................................................... 177.0 � 4 4.0 � 0.1 3.56 BME 12.8 8

MgSiO3 (en)....................................................... 125 5b 3.22 BME . . . 1, 9

MgSiO3 (pv) ...................................................... 247 � 4 3.97c 4.10 BME4 13.13 10

(Mg0.88, Fe0.12)SiO3 (pv) .................................. 266 � 6 3.9 � 0.04 4.26 BME 12.74 1, 11

SiC...................................................................... 227 � 3 4.1 � 0.1 3.22 BME 11.4 1, 12

a Seawater at 12�K.
b K 0

0 values are assumed.
c A fourth-order BME fit was used with K 00

0 ¼ �0:016 GPa�1.
References.— (1) Ahrens 2000; (2) Hanfland et al. 1989; (3) Takahashi & Spain 1989; (4) Anderson et al. 2001; (5) King & Prewitt 1989; (6) Hemley et al.

1987; (7) Halliday et al. 2003; (8) Duffy et al. 1995; (9) Olinger 1977; (10) Karki et al. 2000; (11) Knittle & Jeanloz 1987; (12) Alexsandrov et al. 1989.

8 Note that the denominator in the second term of � as defined in Salpeter &
Zapolsky (1967) is listed as 4.31/3; the factor 4 ; 31/3 actually reproduces the EOSs
in their paper. This definition of � differs from the one in Zapolsky & Salpeter
(1969), which appears to be missing a factor of 1/31/3.
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off-center sites in all ice structures at lower pressures. More
details on our choices of EOSs follow.

For this work we adopt the following for our water EOS. We
use the BME fit from the Hemley et al. (1987) water ice VII data
up to P ¼ 44:3 GPa. At this pressure the theoretical data and the
experimental data agree precisely. Starting at P ¼ 44:3 GPa, we
use the theoretical data derived from density functional theory,
which represent state-of-the-art first-principles calculations. These
calculations were performed with the Vienna ab initio simulation
package using the projector augmented-wave method (Kresse &
Furthmüller 1996). The calculations predict a gradual transfor-
mation from ice VIII to X. The resulting EOS is given in Table 2.
At a pressure of 7686 GPa, our density functional theory cal-
culation agrees with the TFD model, and we use this pressure to

switch to TFD for all higher pressures. In principle, density
functional theory calculations can be performed for any material
with a known crystal structure: this provides a way to bridge the
gap in pressure between the experimental data and the TFD limit.
For the liquid water EOS for P � 10 GPa, we use the loga-

rithmic EOS (see, e.g., Poirier 2000). We use K0 ¼ 2:28 GPa for
seawater at 12 K from Halliday et al. (2003).
Iron.—For an Fe EOSwe use the � phase of Fe with a Vinet fit

up to P ¼ 2:09 ;104 GPa. Note that the Vinet fit parameters are
from experimental datawithP � 330GPa (Anderson et al. 2001).
At this pressure the Vinet curve smoothly approaches the TFD
EOS, and we switch to the TFD EOS.
Silicate.—For a silicate EOS we use the perovskite phase of

MgSiO3.Weuse a fourth-orderBMEfit up toP ¼ 1:35 ; 104 GPa.
At this pressure we switch to the TFD EOS. The fourth-order BME
fit is from a density functional calculation up to P ¼ 150 GPa by
Karki et al. (2000). Karki et al. (2000) note that theirK 0

0 agrees with
fits to experimental data from several sources and K0 is within the
range of experimental data (247 GPa compared to 246Y272 GPa).
The advantage of the Karki et al. (2000) fit parameters is that the
fourth-order BME is the only fit we found that smoothly matches
the TFD EOS at high pressures.
Other materials.—Other materials used in this work include

MgO (Duffy et al. 1995), (Mg, Fe)SiO3 (Knittle & Jeanloz 1987),
and SiC (Alexsandrov et al. 1989). For these species we use the
BME fit up to the pressure where they intersect the TFD curve.
Carbon was the only material we used whose Vinet EOS and

TFD EOS did not intersect; this was likely because we only con-
sidered the graphite phase at pressures below the TFD EOS. For
graphite we interpolated between the Vinet and TFD EOS. For
H, He, and the carbon monoxide EOS, we used the TFD EOS at
all pressures, for simplicity.We set the density to a constant at the
lowpressures (P < 108 Pa)where theTFDEOS is poorly behaved.
We note that a COEOS from shock experiments exists (Nellis et al.
1981) in the pressure range 5Y60GPa, and it has a density towithin

Fig. 2.—H2O EOS used in this study (solid line). We use the BME fit to the
experimental data (Hemley et al. 1987; filled triangles) up to P ¼ 44:3 GPa. At
this pressure we switch to the density functional EOS (squares). At P ¼ 7686 GPa
we switch to the TFD EOS (dashed line). [See the electronic edition of the Journal
for a color version of this figure.]

Fig. 1.—EOSs for differentmaterials at zero or 300K. The solid line is the EOS
used in this study. The dotted line is a fit to experimental data (either Vinet [V]
or BME [BM]), appropriate for low pressures (typically below 200 GPa). The
dashed line is the TFDEOS, appropriate for high pressures (typically above 104GPa).
We adopt theVinet or BMEEOS at low pressures and switch to the TFDEOS at high
pressures. Note that the abrupt increase in density of the MgSiO3 BME curve at
2:8 ; 1013 Pa is above the pressure where we switch over to the TFD EOS and il-
lustrates the invalidity of extrapolating the BME to high pressures. [See the elec-
tronic edition of the Journal for a color version of this figure.]
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8%Y16% of our TFD density. Our CO EOS and mass-radius re-
lationship are therefore approximate.

Figure 3 shows the EOSs for the main materials used in this
study, including the low-, intermediate-, and high-pressure regimes.

4. NUMERICAL RESULTS

We now describe our numerical solutions to equations (1)Y(3)
using our assembled collection of EOSs. We used our model to
investigate the mass-radius relationships for planets from 0.01 to
1000M�. The lower mass limit encompasses planets as small as
Mercury and small bodies like the icy moons of Jupiter and Sat-
urn. The upper mass limit encompasses the 13 MJ planet limit.
Above this mass, self-gravitating H-He spheres undergo deute-
rium or sustained hydrogen fusion (depending on how massive
the body is) and are not considered planets.

4.1. Mass-Radius Relationships

4.1.1. Homogeneous Planets

Building on Zapolsky & Salpeter (1969), we first consider
planets of uniform composition. This artificial scenario helps us
understand the fundamental properties of the planet mass-radius
relationships. Figure 4 shows the mass-radius relationship for
homogeneous planets of H, H/He (25%He bymass), H2O (ice),
MgSiO3 (perovskite), and Fe.

Homogeneous planets all show the same general trend in ra-
dius as a function of mass. For MpP 500 M� the planets’ radii
increase with increasing mass. In this regime, Coulomb forces
balance gravity in hydrostatic equilibrium. For largemasses,Mp 3
500 M�, the compression in the interior is high enough to pressure
ionize the atoms. At these large masses degeneracy pressure of free

electrons balances gravity in hydrostatic equilibrium, and as more
mass is added to the planet, the planet shrinks (Hubbard 1984).
Although planets are not fully degenerate (the term is reserved
for stellar mass white dwarfs; Chandrasekhar 1939), electron de-
generacy pressure does have a significant effect on the mass-
radius relationship for high planetary masses over 500 M�. In
particular, planets of all compositions are approximately the same
size for a decade of masswhere the competing effects of Coulomb
forces (which cause Rp �M1/3

p ) and electron degeneracy pres-
sure (Rp �M�1/3

p ) roughly cancel each other out. See Zapolsky
& Salpeter (1969) for a detailed discussion of the maximum ra-
dius for a given planet of homogeneous composition.

If we assume that our selection of materials spans all plausible
major planet materials, then we can make some inferences from
Figure 4 about the range of planet sizes. First, the Fe planet mass-
radius relationship shows theminimum radius a planet of a given
mass can possess. Second, since water is the least dense of all the
materials we studied (apart from H and He), the water planet
curve in Figure 4 may serve to show the maximum radius for a
planet with no substantial atmosphere.

The mass-radius relationships for planets of homogeneous
compositions (Fig. 4) can be used to infer the bulk composition
of planets. Using the solar system as an example, and from Fig-
ures 4 and 5, we could infer that Earth and Venus are composed
primarily of a mixture of silicates and iron, while Mercury is
composed predominantly of iron. We could also infer that Uranus
and Neptune are not giant H/He planets and nor are they ‘‘rock
giants;’’ they are predominantly rocky or icy and must have small
but significant gas envelopes. Jupiter and Saturn are grossly fitted
by the H/He curve, but the H/He interiors of hot Jupiters are
dominated by thermal effects and are thus not fitted well by cold
homogeneous planets; indeed, we are not aiming to model gas
giant planets in this paper.

Fig. 3.—EOSs for five different materials used in this study. Each EOS data
set was derived by combining a fit to experimental results and the TFD limit at
high pressure. For water ice we used density functional theory as a bridge between
experiment and the TFD theory. The EOSs are all reasonably well approximated
by a polytropic-like expression �(P) ¼ �0 þ cPn, where �0 is the zero-pressure
density and c and n are constants. Table 2 lists these constants for somematerials.
The filled triangles show one such fit for the H2O EOS.

TABLE 2

Density Functional Theory (DFT) EOS for Water Ice VIII and X

V

(cm3 mol�1)

�

( kg m�3)

P

(GPa)

10.998300.................................................... 1.636617 2.320

10.429585.................................................... 1.725860 4.155

9.880818...................................................... 1.821712 6.664

9.351623...................................................... 1.924800 9.823

8.350443...................................................... 2.155574 18.791

7.878082...................................................... 2.284820 25.361

7.423411...................................................... 2.424761 33.744

6.986806...................................................... 2.576285 44.314

6.567891...................................................... 2.740606 56.970

6.165913...................................................... 2.919275 74.188

5.780497...................................................... 3.113919 94.406

5.411641...................................................... 3.326163 126.815

5.164734...................................................... 3.485175 155.924

4.654734...................................................... 3.867031 240.696

4.195170...................................................... 4.290649 351.114

3.780772...................................................... 4.760933 498.660

3.407399...................................................... 5.282621 691.938

3.070912...................................................... 5.861450 937.585

2.767547...................................................... 6.503954 1260.182

2.494293...................................................... 7.216474 1673.049

2.248138...................................................... 8.006625 2188.301

2.026072...................................................... 8.884186 2853.712

1.825836...................................................... 9.858497 3691.387

1.645548...................................................... 10.938603 4737.211

1.483327...................................................... 12.134882 6040.611

1.336538...................................................... 13.467635 7686.171

Note.—DFT predicts a gradual transition between the two phases.
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Turning to exoplanets, Figure 4 shows that the transiting Saturn-
mass9 exoplanet HD149026bmust contain a substantial fraction of
elements heavier than H and He. More detailed evolutionary and
interior models find that HD 149026b has 70M� of rockymaterial,
almost 2

3
of its totalmass (Sato et al. 2005).At 22.6M� and 3.95R�,

GJ 436b must have a significant H/He envelope because its radius
is clearly larger than a pure water ice planet. The 7.5 M� planet
GJ 876d (Rivera et al. 2005) does not have a measured radius, but
a radius measurement with a fractional radius uncertainty of 5%
would distinguish among a predominantly rocky planet, a predom-
inantly icy planet, and a planet with a substantial gas envelope.

We havemodeledmassive solid exoplanets up to 4000M� (up
to 13MJ). These planets would be Jupiter-mass planets composed
of solid material. Such massive exoplanets are not yet known to
exist. In the standard planet formation theory massive planets are
primarily composed of H/He and are limited to have rocky/icy
cores of up to about 10M�. HD 149026bwith a 70M� core shows
that a wider range of planets exists. Massive solid exoplanets of
hundreds to thousands of Earth masses may be able to form around
massive stars (B and O stars; 5Y120M�) where the protoplanetary
disk would contain enough heavy elements. In addition, these stars
have high UV radiation and winds that could photoevaporate the

nascent protoplanetary gas disk, allowing massive planets to
form out of the remaining solid material.

4.1.2. Differentiated Planets

All solar system planets have multiple layers of different com-
positions. These planets are differentiated,meaning that the denser
material lies beneath shells of progressively less dense material.
We now consider differentiated planets of various compositions.
We focus on materials that comprise the solar system planets and
moons: iron, silicates, H2O (ice), and H/He gas envelopes. We
ignore elements that have abundances too low to affect our model
for the planet radius.
We explore two types of differentiated gas-free planets, iron/

silicate planets andwater planets. These planets lack gas envelopes,
although they may have atmospheres too small to affect the mea-
sured planet radius. Figure 4 shows themass-radius relationship for
differentiated planets without gas envelopes. Figure 5 shows the
same mass-radius relationships in more detail. The calculations
assume a constant fractional mass in each layer. In general, the
radii of differentiated planets (where the more dense components
are interior to the less dense components) lie in between the radii
of homogeneous spheres composed of the planet’s most and
least dense components.
We investigate iron/silicate planetswith iron cores andMgSiO3

mantles. We consider Fe core mass fractions of 32.5% (‘‘super-
Earths’’) and 70% (‘‘super-Mercuries’’). It is remarkable how
well Mercury’s, Venus’s, and Earth’s masses and radii are fitted
by these cold iron/silicate planets, as seen in Figure 5. We show
the density as a function of radius for the silicate planets in Fig-
ures 6a and 6b. As expected, the more massive planets have
higher densities in their cores.
We define water planets to be solid planets with >25%H2O by

mass. Jupiter’s moons Ganymede and Callisto would be water
planets by this definition.10We investigate water planets with iron
cores and silicate mantles. We consider planets with fixed mass
fractions: 45% water, 48.5% silicates, and 6.5% Fe (similar to
Jupiter’s icy moon Ganymede; Schubert et al. 2004); 75% water,
22% silicates, and 3% iron (a similar core and silicate shell mass
ratio asGanymede); and 25%water with a 58% silicate shell and a
17% iron core. Figure 6c shows the density profiles as a function
of planet radius for the 45% water planets.
We compared our fiducial super-Earth model with a 32.5% Fe

core and 67.5% silicate mantle to a model that more closely
represents Earth: a model with a 32.5% by mass core of FeS
(where FeS includes 10% S by mass) and a mantle that includes
90% (Mg, Fe)SiO3 and 10% MgO (Poirier 2000). The results
from this Earth model are shown by the squares in Figure 7 and
agree closely with our fiducial super-EarthYlike planet. It is re-
markable how our simple fiducial model matches the Earth’s ra-
dius to within 3% for a 1 M� planet.
There are further degeneracies among the mass-radius relation-

ships for planets of different compositions. For example, planets
with 10% water by mass (with 27% iron cores and 63% silicate
mantles) have mass-radius curves that overlap with our silicate
planet mass-radius curves. As a second example, if we adopt a
6M� water planet similar to the Léger et al. (2004) water planet
composed of 1 M� Fe, 2 M� silicates, and 3 M� H2O, we find
that the total planet radius differs by less than 0.5% from that of
our model with 45% water, 48.5% silicates, and 6.5% Fe. While
the total planetmass and radius are the same, the interior structures

Fig. 4.—Mass-radius relationships for solid planets. The solid lines are ho-
mogeneous planets. From top to bottom the homogeneous planets are hydrogen
(cyan solid line), a hydrogen-helium mixture with 25% helium by mass (cyan
dotted line), water ice (blue solid line), silicate (MgSiO3 perovskite; red solid line),
and iron [Fe(�);green solid line]. The nonsolid lines are differentiated planets. The
red dashed line is for silicate planets with 32.5% by mass iron cores and 67.5%
silicate mantles (similar to Earth), and the red dotted line is for silicate planets with
70% by mass iron core and 30% silicate mantles (similar to Mercury). The blue
dashed line is for water planets with 75% water ice, a 22% silicate shell, and a 3%
iron core; the blue dot-dashed line is for water planets with 45%water ice, a 48.5%
silicate shell, and a 6.5% iron core (similar toGanymede); and the blue dotted line is
for water planets with 25%water ice, a 52.5% silicate shell, and a 22.5% iron core.
The blue triangles are solar system planets: Mars, Venus, Earth, Uranus, Neptune,
Saturn, and Jupiter (left to right). The magenta squares denote the transiting exo-
planets, including HD 149026b at 8.14 R� and GJ 436b at 3.95 R�. Note that elec-
tron degeneracy pressure becomes important at highmass, causing the planet radius
to become constant and even decrease for increasing mass.

9 Saturn is 95 M� and Jupiter is 318 M�.

10 Under a water planet definition that includes H /He envelopes, Uranus and
Neptune would also be water planets because they are believed to have >25%
water by mass.
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of the models are quite different, as shown in Figure 7d (but note
that the interior structure of our Leger-type planet is different than
the one in Léger et al. 2004). For the same mass, the radius of the
Leger-type planet will be slightly lower, but both types of planets
fall along the same mass-radius curve. See Valencia et al. (2007b)
andL. Zeng&S. Seager (2007, in preparation) for detailed discus-
sions on degeneracies in planets composed of iron cores, silicate
mantles, and water outer layers.

4.1.3. Planets with H /He Gas Envelopes

We now turn to a discussion of differentiated planets with sig-
nificant H/He envelopes. For simplicity and consistency, we use
a zero-temperature EOS for H and He (Salpeter & Zapolsky

1967). A zero-temperature EOS for an H/He mixture may rep-
resent real planets only poorly, but since a zero-temperature EOS
underestimates a gas’s volume, using such an EOS allows us to
make one important point: adding anH/He shell can easily boost
a planet’s radius dramatically. For example, adding 20% H/He
by mass can double a planet’s radius.

Figure 8 shows mass-radius relationships for planets with gas
envelopes and fixed core masses. The cores contain 70%MgSiO3

and 30% Fe. Five cases are shown: planets with fixed core masses
of 5, 10, 20, 50, and 100 M�. The values in Figure 8 are lower
limits because thermal effects willmove the gas curves up and left,
i.e., to larger radii. For a detailed discussion of mass-radius curves
for planetswith significant gas envelopes see Fortney et al. (2007).

Fig. 5.—Mass-radius relationships for planets with Rp < 4 R�. The lines are as in Fig. 4: blue are for water ice planets, red are for silicate planets, and green is for pure
iron planets. Black error bars are shown for 2% and 10% uncertainty in planet mass and radius. Each panel shows a different mass range. The terrestrial mass solar system
planets are shownwith blue triangles. The exoplanets GJ 876d andGJ 531c are shownwith a magenta square in panel (c); although the radii are not known, they are shown
to represent known low-mass exoplanets. The exoplanet GJ 436b is shown in panel (d ).
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In Figure 8 we also show the radius of the core of the H/He plan-
ets as a function of the total mass of the fixed-mass core and
overlying H/He envelope.

All planets with a significant amount of H/Hewill have a larger
radius than the homogeneous water ice planets. Planets with even
a relatively small fractional mass of H/He can therefore be distin-
guished from planets with an insignificant gas envelope (Fig. 8).
Uranus andNeptune, for example, are believed to have about 10%
of their mass inH/Hematerial. Yet, Uranus andNeptune are up to
2 times larger than a planet of similar mass and core composition
but without the H/He envelope. We propose to call planets with-

out a significant gas envelope, i.e., planets that lie below the pure
water ice line, super-Earths.

4.1.4. Nonstandard Planets: Carbon and Helium Planets

Wenow consider planets with compositions very different from
solar system planets, beginning with carbon planets.We have pre-
viously presented the idea of carbon planets, planets composed
of >50% carbon compounds by mass (Kuchner & Seager 2006;
see also Cameron et al. 1988; Gaidos 2000). Carbon planets should
form in environments where the carbon-to-oxygen ratio C/Ok1, in
contrast to the solar abundance ratio (C/O ¼ 0:5). When C/Ok1,

Fig. 6.—Interior structure of solid exoplanets. From top to bottom the lines in panels (a), (b), and (c) are for planets withMp ¼ 50, 10, 5, and 1M�, respectively. (a) Silicate
planets with a 32.5% bymass Fe core and a 67.5%MgSiO3 mantle. (b) Same as (a), but for planets with a 70% Fe core and 30% silicate mantle. (c) Interior structure for water
planets with 6.5% Fe core, 48.5% MgSiO3 shell, and 45% outer water ice layer. (d ) Interior model for two different water exoplanets with the same planet mass and radius:
Mp ¼ 6:0 M� and Rp ¼ 2:0 M�. The solid line is for a model with layers in percentages by mass of Fe/MgSiO3/ H2O of 17/33/50 (similar to the composition of the water
planet in Léger et al. 2004), and the dotted line for 6.5/48.5/45 (similar to the composition of Ganymede).
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the high-temperature condensates available in chemical equilibrium
are very different from the environment with C/O < 1 (Lewis
1974; Wood & Hashimoto 1993; Lodders & Fegley1997). For
example, SiC is the dominant form of Si instead of silicates (i.e.,
Si-O compounds). Such carbon-rich environments may occur in
a local area enriched in C or depleted in H2O in an otherwise
solar abundance protoplanetary disk. Carbon-rich environments
would also occur in a protoplanetary disk with a global C/O > 1,

like the disk that formed the planets around pulsar PSR 1257+12
(Wolszczan & Frail 1992), and do occur in the well-known �
Pictoris debris disk (Roberge et al. 2006).

The dominant composition of carbon planets is unknown. The
details would depend on protoplanetary disk temperature, com-
position, relative abundance, and departures from chemical equi-
librium. SiC and graphite are both plausible compositions (based
on observations and calculations of carbon star atmospheres;

Fig. 7.—Mass-radius relationships of solid planets to illustrate phase effects. (a, b) From top to bottom the solid lines are for pure MgSiO3 perovskite planets, MgSiO3

planets with a 32.5% by mass Fe(�) core, MgSiO3 planets with a 70% Fe core, and pure Fe planets. The dotted lines just above or beneath each of the solid lines show the
planet mass-radius relationship for the BME or Vinet EOS alone without the TFD EOS. The top dashed line shows the pureMgSiO3 perovskite planet with a phase change
to MgSiO3 enstatite at pressures less than 10 GPa. The squares show super-Earths composed of a 32.5% FeS core by mass and a 67.5% mantle; the mantle itself is
composed of 90% (Mg, Fe)SiO3 by mass mixed with 10% MgO. (c, d ) From top to bottom the solid lines are water ice planets with layers in percentages by mass of
Fe/MgSiO3 /H2O of 0/0/100, 3/22/75, 6.5/48.5/45, and 22.5/52.5/25. The dotted lines beneath each of the solid lines show the planetmass-radius relationship for the BME
form of H2O ice, without using our adoptedH2O EOS (but using our adopted EOSs forMgSiO3 and Fe). The dashed line shows the pure water ice planet with liquid water
below 10 GPa. The magenta triangles show the mass-radius relationship for water planets with 17/33/50, illustrating a degeneracy with the 6.5/48.5/45 water planet (see
also Fig. 6d ).
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Lodders & Fegley 1997). We compute the mass-radius relation-
ship for three different kinds of carbon planets. The first carbon
planet is a planet with an Fe core and an SiC mantle. The second
is a carbon planet with an Fe core and a graphite mantle. The third
type of carbon planet is a pure CO (carbon monoxide) planet. A
carbon monoxide planet could form in a stellar disk composed
from a CO white dwarf that has been shredded by its more mas-
sive stellar binary companion (Livio et al. 1992).

The main result from our carbon planet computations (Fig. 9)
is that the carbon planetmass-radius relationships overlap those of
the silicate andwater planets. This is because the zero-pressure den-
sity of SiC (3.22 g cm�3) is similar to that of MgSiO3 (4.10 g cm

�3).
While the zero-pressure density of graphite (2.25 g cm�3) is almost
twice that of water ice VII (1.46 g cm�3), a graphite planet with an
Fe core has a similar average density to a water planet with an
iron core and silicate mantle. CO planets’ mass-radius curves also
overlap the mass-radius curves of water planets that contain iron
and silicate because of a similar zero-pressure density. Our CO
planets are similar in average density to water ice planets, again
because the zero-pressure densities are similar. The precise mass-
radius relationship of CO planets should involve temperature and
a more accurate EOS than our adopted one.

We also compute the mass-radius relationship for a pure He
planet. We again use the zero-temperature He EOS (Salpeter &
Zapolsky 1967) to avoid introducing a free parameter based on
the planet’s unknown entropy. The helium mass-radius relation-
ship is therefore approximate.

A predominantly He planet may potentially form from a low-
mass white dwarf. For example, an He planet can conceivably
form in one type of symbiotic binary star called an AMCVn (AM
Canes Venatici), composed of two very H-poor white dwarfs (i.e.,
He core white dwarfs) surrounded by a circumbinary helium ac-
cretion disk formed during mass transfer from the less massive to
themoremassivewhite dwarf (see, e.g., Podsiadlowski et al. 2003
and references therein). After it loses most of its mass, the less
massive white dwarf may approach planetary mass.

4.2. Phase Changes and Thermal Effects

Real planets have phase changes and temperatures above 300K
in their interiors. Here we investigate the effect of phase changes
and temperatures on the planetmass and radius.Whilemodels that
include temperature and phase changes can be more realistic than

Fig. 8.—Effect of an H/He gas envelope on planet radius, showing that only a small mass of H/He gas contributes a large factor to the planet radius. The lines in this
figure are the same as those in Fig. 4. Themagenta squares are planets with a fixed coremass composed of amixture of 30%Fe bymass and 70%MgSiO3. The cyan squares
show the core mass and radius only. (a) Planets with a fixed core mass of 5 and 10M� (left to right). (b) Planets with a fixed core mass of 20, 50, and 100M� (left to right).
These H /He planet radii are underestimates because they are for zero temperature; temperature would make the planets larger for a given mass (i.e., move the squares up
and left in this figure). The exoplanet GJ 436b is shown in (b).

Fig. 9.—Mass-radius relationship for carbon planets and helium planets. The
lines are the same as those in Fig. 4. The carbon planet mass-radius relationships
are shown for carbon monoxide planets (green triangles), graphite planets with
30% Fe cores by mass and 70% graphite mantles (circles), and SiC planets with
30%Fe cores bymass and 70%SiCmantles (squares). Pure cold He planet mass-
radius relationships are shown by open squares connected by a solid line. The
solar system planets are shown by the blue triangles.
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our simple models, they complicate the interior boundary condi-
tions and necessarily involve regimes where the EOSs are highly
uncertain. See Léger et al. (2004), Valencia et al. (2006, 2007a),
Selsis et al. (2007), and Sotin et al. (2007) for low-mass planet
interior models that do include phase and temperature changes
for specific types of planets.

4.2.1. Phase Changes

In this section we show that the low-pressure phase changes
have little effect on the planet mass-radius curves. This lack of
effect is because the low-pressure phase changes occur at pres-
sures<10 GPa. Figure 10 shows the pressure at m(r) ¼ 0:97Mp

for homogeneous planets. Figure 10 shows that for planetsk3M�,
most of the planet’smass is at pressures higher than 3GPa (with the
exception of purewater planets). Herewe discuss the phase changes
in some of the key planetary materials individually.

Water.—We begin by investigating the liquidwater towater ice
phase change. The room-temperature bulk modulus K0 for liquid
water is an order of magnitude smaller than K0 for water ice VII.
Furthermore, the densities of liquid water and water ice VII are
different by 50% (see Table 1). Despite these large differences in
physical properties, it is important to remember that liquids are
still not highly compressible materials and we expect them to be-
have more similarly to solids than to gases under high pressure.
In order to investigate the effect of a liquid water phase for a water
planet, we consider liquid water to be present at P < 10 GPa. The
temperature would be�650 K for water to remain a liquid at this
high pressure. We consider the differences between a pure water
ice planet with and without the liquid ocean.We find less than 3%
difference in the radius for water ice planets without and with a
liquid water ocean for planets in the mass range 1Y4M�.We find
<1% difference in the radii of the two types of planets for Mp

above 5 M� (see Fig. 7).
Silicates.—We now turn to phase changes in our MgSiO3

perovskite planets by considering the low-pressure phase of MgSiO3

called enstatite. We adopt the low-pressure enstatite phase at pres-
sures less than 10 GPa. The differences in K0 and �0 between the

high-pressure perovskite phase and the low-pressure enstatite
phase are much less than the differences between liquid water
and water ice (see Table 1). Hence, just as in the water planet case,
we see a relatively small difference (<1%) in radius between sili-
cate perovskite planets with and without a layer of enstatite at
P � 10 GPa (see Fig. 7).

Iron.—We now turn to phase changes in Fe. The low-pressure
phase of Fe is Fe(�). Fe(") and Fe(�) have the sameK0 andK

0
0 to

within the experimental error bars and only slightly different zero-
pressure densities (see Table 1). In addition, Fe(�) only exists at
<10GPa, whereas in a differentiated planet Fe is expected to exist
at pressures higher than 10 GPa and in a homogeneous Fe planet
most of the planet’s mass is above 10 GPa (Figs. 10 and 11). For
these reasons the phase change of Fe(�) to Fe(�) has little to no
effect on the mass-radius relationship of Fe planets.

High-pressure phase changes.—Even if there is a phase change
at high pressures (not considered here), we expect the associated
correction to the EOS to be small and hence the derived planet radii
to be reasonably accurate. Phase changes arise from a rearrange-
ment of atoms in the crystal structure and the associated modi-
fications in chemical bonds. With increasing pressure, the atoms
become packed more and more efficiently and the importance
of chemical bonding patterns drops significantly. For example,
above 100GPa, the postperovskite phase (Murakami et al. 2004)
and perovskite phase of silicate have very similar zero-pressure
volumes and bulk moduli, to less than a few percent difference
(Tsuchiya et al. 2005). We caution that although phase changes
do not need to be considered, theoretical calculations are needed
to compute an accurate EOS at high pressures (i.e., between 200
and 104 GPa) because in many cases an extrapolation of the
BME or Vinet EOS fit will not do (see x 3.3). For example, for
some water ice planets with masses above 10 M�, the effect of
extrapolating the BME fit without considering a more accurate
higher pressure EOS is considerable (Fig. 7d ).

At very high pressures the TFD EOS becomes valid. To un-
derstand the planet mass range where TFD effects are important,
we show planet mass-radius relationships in the case of ignoring

Fig. 10.—Pressure level that contains 97% of the planet radius or mass. (a) Pressure at which the planet is 97% of its total size, as a function of total planet radius.
(b) Pressure at which the planet contains 97% of its total mass, as a function of planet mass. The dashed line is for pure water ice planets, the solid line is for pure silicate
planets, and the dotted line is for pure iron planets and H2O ice VII. [See the electronic edition of the Journal for a color version of this figure.]
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the TFDEOS in the dotted lines in Figure 7, i.e., in using only the
extrapolated BME or Vinet fit.

4.2.2. Temperature

Temperature has little effect on the radius of solid exoplanets.
The reason is that the density of a solid changes by a relatively small
amount under the influence of thermal pressure. At low pressures,
the crystal lattice structure dominates the material’s density and the
thermal vibration contribution to the density is small in comparison.
At high pressures, the close-packed nature of the atoms prevents
any significant structural changes from thermal pressure contribu-
tions. Moreover, any change in average density of a planet of fixed
composition results in a smaller change in the planet radius than the
change in average density because Rp � �̄�1/3

p .
Some authors have stated or shown with models that temper-

ature is not important for deriving a planet’s total mass and radius
(see, e.g., Valencia et al. 2006, 2007a; Fortney et al. 2007; Sotin
et al. 2007 and references therein). In this subsection we go into
detail to estimate the effect of temperature on density for the three
main materials that we studied, iron, silicates, and water ice VII.

Heating planetary material adds a thermal contribution to the
pressure term. In a first approximation one can assume that the
thermal pressure is a linear function of temperature (e.g., Anderson
& Goto 1989; Poirier 2000). The thermal contribution to the pres-
sure, Pth, can be written as

Pth ¼
Z T

0

@P

@T

� �
V

dT ¼
Z T

0

� Tð ÞK0 Tð Þ dT : ð7Þ

Here� (T ) is the thermal expansivity andK0(T ) is the bulk mod-
ulus as before.

For most cases the term � (T )K0(T ) is independent of volume
above the Debye temperature�D (Anderson & Goto 1989). The
thermal pressure term can then be written as

Pth ¼
Z �D

0

�K0 dT þ �K0 T ��Dð Þ: ð8Þ

Note that the�D is around 700K for silicate- and Fe-bearingmin-
erals. �D is significantly lower (300 K) for water ice and signif-
icantly higher for carbon (2000 K). Moreover, for Earth-bearing
minerals Anderson&Goto (1989) find thatPth is linear in T down
to much lower temperatures and that

Pth ¼ �K0 T � 300 Kð Þ: ð9Þ

For (Mg, Fe)SiO3we use�K0 ¼ 0:00692 GPaK�1 fromAnderson
&Masuda (1994). We note that, for our purposes, (Mg,Fe)SiO3

is similar enough to MgSiO3 for estimating the thermal pressure.
For metals the thermal excitation of electrons must be taken

into account by including a higher order term (Isaak&Anderson
2003 and references therein),

Pth ¼ �K0 T � 300 Kð Þ þ @�K0

@T

� �
V

T � 300 Kð Þ2: ð10Þ

Weuse values of �K0 ¼ 0:00121 GPaK�1 and ½(@�K0)/(@T )	V ¼
7:8 ; 10�7 GPa K�2 from Isaak & Anderson (2003).
For H2O ice VII, we constructed Pth based on (P, V ) isotherms

according to the thermodynamic relations in equations (2) and
(3) in Fei et al. (1993). This method uses a linear fit with T to
� (T ) and a parameter �1 that describes the pressure effect on the
measured volume at high temperature. We take the parameters
from Frank et al. (2004).
Figure 12 shows Pth versus temperature for Fe, H2O ice VII,

and (Mg, Fe)SiO3. Pth increases more slowly at high pressure
than at low pressure because at high pressure the thermal expan-
sion becomes a constant; the atoms become tightly packed so that
any thermal pressure has a decreasing contribution to the total
pressure. Although water ice data are only available for ice VII to
50 GPa and�800 K (Frank et al. 2004), we expect it to show the
same Pth trend with increasing temperature as other materials.
We can estimate the change in density caused by a thermal pres-

sure.We computed �(T ) corresponding to the total pressurePtotal ¼
P þ Pth using the EOSs described in x 3.3. Figures 12 and 13 show
(P, �) isotherms for the main materials we studied.

Fig. 11.—Interior structure of homogeneous planets of 0.1, 1, 10, and 100M�.
The top panels show the fractional mass as a function of fractional radius. Themid-
dle panels show the density as a function of fractional radius. The bottom panels
show the pressure as a function of fractional radius.

Fig. 12.—Thermal pressure for Fe("), (Mg, Fe)SiO3, and H2O. See text for
details.
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ForMgSiO3, the decrease in density due to thermal pressure is
less than 4% over the temperature range 300Y6000 K and above
10 GPa where the material is solid (Fig. 13a). Below 10 GPa the
decrease in density is less than 2.5% for temperatures up to 1200K
(Fig. 13b; for densities less than the zero-pressure 300 K density
see Fig. 7 in Anderson & Masuda 1994).

Fe is known to have a higher thermal expansivity thanMgSiO3,
and its density therefore decreasesmore thanMgSiO3 for the same
temperature increase. The Fe density decrease is less than 4% for
pressures above 100 GPa (Fig. 14a). Earth’s Fe core is at pres-
sures higher than 100 GPa (Dziewonski & Anderson 1981), and
we expect the same for more massive differentiated planets with
similar composition (see, e.g., Valencia et al. 2006). We further
note that as the planet’s Fe mass fraction increases, more of the
planet’s mass is at higher pressures, making the material’s den-
sity change at low pressure in response to temperature less rel-
evant. For example, Figure 10 shows that for a pure Fe planet
with Mp > 0:1 M�, 97% of the planet’s mass is above 1 GPa,
and for planets with Mp > 1 M�, 97% of the planet’s mass is
above 10 GPa.

Using available data to 50 GPa and 800 K (Frank et al. 2004),
we find that H2Owater ice VII density changes by less than a few
percent throughout this pressure and temperature range (Fig. 14b).
We note that above approximately 1000 K water ice reaches an
ionic fluid phase (Goncharov et al. 2005). Nevertheless, we em-
phasize that our water ice EOS (which includes phases VII, VIII,
and X; see Table 2) agrees with recent Hugoniot shock data to
within the experimental uncertainties. These recent data are from
Lee et al. (2006) and range in pressure from 47 to 250 GPa and in
temperature from 2100 all the way to 19,000 K. More work needs
to be done to quantify the thermal pressure effects above 250 GPa
and in the ionic phase, which is beyond the scope of this paper.

Our (P, �) isotherms in Figures 13 and 14 can be interpreted in
light of the temperature-pressure profiles of planetary interiors.
Earth, for example, has temperatures of approximately 1000 K
at 50 GPa, 2000 K at 150 GPa, and up to 6000 K at 350 GPa
(Poirier 2000). Super-Earth interior models calculated in Valencia

et al. (2006) show that below 1 GPa the temperature is less than
1600 K, above 100 GPa the temperature is 2500 K, and the tem-
perature is up to about 7000 K at hundreds of GPa. Isentropes for
Neptune are expected to be about 2500 K at 20 GPa and to reach
7000 K at 600 GPa. The fact that high temperatures are reached
only at high pressures lessens the temperature effect because the
fractional contribution of the thermal pressure to the total pressure
decreases as the total pressure increases (Fig. 12).

We argue that even for the short-period hot exoplanets, those
in few day orbits whose surface temperatures could reach 1000Y
2000 K, the thermal pressure contribution to radius is still small.
This statement is based on the argument that for solid planets
above one to a few Earth masses (depending on composition) the
fractional radius affected by such high temperatures is small.

Based on the above discussion of density decrease as a func-
tion of temperature, we illustrate the effect of temperature on
planet radius by the following example. Taking a case where the
average density is overestimated by 3.5% in a uniform 300 K
temperature model, the planet’s total radius would be under-
estimated by only 1.2%. This is due to the Rp � �̄�1/3

p scaling.

5. A GENERIC MASS-RADIUS RELATIONSHIP
FOR SOLID EXOPLANETS

A glance at Figure 4 may suggest to the astute reader that the
mass-radius relationships for a variety of planets all have a sim-
ilar functional form, perhaps caused by some symmetry of the
underlying equations. Indeed, there is such a symmetry and a
common functional form: a generic mass-radius relationship that
we describe here. This generic mass-radius relationship is valid
for planet masses up to about 20 M�.

5.1. A Modified Polytropic Equation of State

Our generic mass-radius relationship is based on the similar
forms of the EOSs of all solid materials we have considered. The
zero-temperature or 300 K temperature EOSs for the solid ma-
terials we considered can be approximated by the function

�(P) ¼ �0 þ cPn: ð11Þ

Fig. 13.—Isotherms for MgSiO3 (perovskite). Note that the perovskite phase
of silicate does not exist for thewhole region of low pressures shown in (b), which
is therefore shown to illustrate the general properties of silicates. [See the elec-
tronic edition of the Journal for a color version of this figure.]

Fig. 14.—Isotherms for Fe(�) and H2O ice VII. See text for details. [See the
electronic edition of the Journal for a color version of this figure.]
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Table 3 lists the best-fit parameters �0, c, and n for some mate-
rials over the range P < 1016 Pa. The density given by these ap-
proximate EOSs matches the density given by the more detailed
EOSs we used above to within 2%Y5% for the pressure ranges
P < 5 ; 109 Pa and P > 3 ; 1013 Pa. At intermediate pres-
sures, the discrepancy ranged from less than 1% to 12%.

The similarity of the EOSs of all solid materials stems from
the behavior of chemical bonds under pressure. At low pres-
sures the chemical bonds of the material can withstand compres-
sion. Above some pressure, the energy imparted to the material
breaks the chemical bonds and the material structure radically
changes. The ‘‘crossover’’ pressure is roughly the material’s bulk
modulus. For our simple analytic EOS, the bulk modulus is

K � �0
c

� �1=n
: ð12Þ

Our approximate EOS is amodified polytropic EOS. Polytropic
EOSs are of the form P ¼ Kp�

1þ1/m, or � ¼ (P/Kp)
m/(mþ1), where

Kp is a constant and m is the polytropic index. Our approximate
EOS fit differs from the polytropic EOS by the addition of the
constant �0; it incorporates the approximate incompressibility of
solids and liquids at low pressures.

5.2. Dimensionless Equations of Planetary Structure

The new generic EOS contains some dimensional quantities,
�0 and c, that allow us to conveniently write equations (1) and (2)
in dimensionless form. We rescale the variables P, �, m, and r as
follows, where the subscript s refers to a scaled variable:

�s ¼
�

�0
; ð13Þ

Ps ¼
P

P1

; ð14Þ

rs ¼
r

r1
; ð15Þ

ms ¼
m

m1

; ð16Þ

where

P1 ¼
�0
c

� �1=n
; ð17Þ

r1 ¼ G�1=2�
(1=2n�1)
0 c�1=2n; ð18Þ

and

m1 ¼ r31�0: ð19Þ

With this change of variables, the equations of planetary struc-
ture become mass of a spherical shell

dms rð Þ
drs

¼ 4�r2s �s rsð Þ; ð20Þ

hydrostatic equilibrium

dPs rsð Þ
drs

¼ � �s rsð Þms rsð Þ
r2s

; ð21Þ

and the EOS

�s ¼ 1þ Pn
s : ð22Þ

Figure 15 shows dimensionless mass-radius relationships
derived by numerically solving the above equations the sameway
we solved the unscaled equations. It shows the total dimensionless
planet mass, Ms, as a function of the scaled planet radius, Rs,
where Rs is defined by the outer boundary condition P(Rs) ¼ 0.
At Rs we also have Ms ¼ ms(Rs). We generated the numerical
mass-radius curves by solving the equations for a range of central
pressure values of Ps.
The dimensionless mass-radius curves depend only on n. We

plot curves for three values of n:n ¼ 0:513 (H2O),n ¼ 0:528 (Fe),
and n ¼ 0:544 (silicate). These values of n span the range of be-
haviors of all the EOSswe studied.We also show solutions for the
interior structure of homogeneous planets in Figure 16.
The solutions behave quite differently on either side of the line

Ms ¼ 1. For Ms < 1, Rs strictly increases with Ms and does not
depend on n. ForMs > 1, Rs depends strongly on n and does not
necessarily strictly increase with Ms. This contrasting behavior

TABLE 3

Fits to the Merged Vinet/BME and TFD EOS

of the Form �(P) ¼ �0 þ cPn

Material

�0
( kg m�3)

c

( kg m�3 Pa�n) n

Fe(�) ........................................ 8300.00 0.00349 0.528

MgSiO3 (perovskite) ............... 4100.00 0.00161 0.541

(Mg, Fe)SiO3 ........................... 4260.00 0.00127 0.549

H2O .......................................... 1460.00 0.00311 0.513

C (graphite) .............................. 2250.00 0.00350 0.514

SiC............................................ 3220.00 0.00172 0.537

Note.—These fits are valid for the pressure range P < 1016 Pa.

Fig. 15.—Dimensionless mass-radius relationships for different materials.
The scaled mass and radius are given in eqs. (15) and (16). These dimensionless
mass-radius relationships depend only on the exponent, n, in the modified poly-
trope EOSs (n ¼ 0:513 corresponds to the H2O modified polytrope, n ¼ 0:528
corresponds to Fe, and n ¼ 0:541 corresponds toMgSiO3). ForMsP4, the mass-
radius relationship for all materials takes approximately the same functional form.
The squares are the approximate analytical scaled mass-radius relationship given
in eq. (39), which is valid forMsT1 and is the same for all n. [See the electronic
edition of the Journal for a color version of this figure.]
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arises because for MsT1, the EOS reduces to �s ¼ 1, and for
Ms 31, the EOS reduces to the polytropic form �s ¼ Pn

s .
Table 4 lists some values of m1, r1, and P1 for some EOSs

based on the values of �0, n, and c listed in Table 3. Curiously,
the scaling parameters m1 and r1 are somewhat similar for the
polytropic-like mass-radius solutions for H2O and Fe because
these materials have similar ratios of K0/�0.

For Ms < 4, the dimensionless mass-radius relationship is
approximately

log10Rs ¼ k1 þ 1
3
log10 Msð Þ � k2M

k3
s ; ð23Þ

where k1 ¼ �0:20945, k2 ¼ 0:0804, and k3 ¼ 0:394; this approx-
imation is good to 1% over this range. ForMs > 4, the scaled ra-

dius becomes a strong function of n. But we can use the analytic
function in equation (23) to describe the dimensionless mass-
radius relationships for scaled masses, Ms, up to �40 if we use
the values of ki for different materials listed in Table 4.

Equation (23) and the scaling parameters in Table 4 provide a
convenient approximate summary of the results of this paper for
homogeneous planets.

It may appear that the scaled mass-radius relationship is not
useful for differentiated planets, since differentiated planets com-
bine materials with different EOSs. We find, however, that even
the radii of differentiated planets are well described by the func-
tional form shown in Figure 15 for MsP 4 (i.e., up to where the
scaled numerical solutions for different materials differ from each
other).

This circumstance provides us with a convenient way to sum-
marize our results for differentiated planets. To any differentiated
planetmodel,we can assign an effectivem1 and r1. These effective
scalings allow us to summarize all of our calculated mass-radius
relationships using equation (23), regardless of whether theywere
computed with the modified polytropic EOS or our actual Vinet/
BME and TFD EOSs. Table 4 lists some effective values of m1

and r1 for a few examples of differentiated planets. We calculated
these numbers by comparing the mass-radius curves for differ-
entiated planets (shown in Fig. 4) to equation (23). To find the
approximate mass-radius relationship for any given planet, look
upm1 and r1 in Table 4 and plug these numbers into equation (23)
using k1 ¼ �0:20945, k2 ¼ 0:0804, and k3 ¼ 0:394.

The scaled variables help us to understand why the solid
planet mass-radius relationships are very nearly the same for all
materials we considered, forMs � 1. We first recall thatMs ¼ 1
is defined as the mass so that the central, i.e., the maximum,
pressure in the planet is Ps ¼ 1. Next, for Ps � 1, i.e., every-
where in the planet forMs � 1, the density (or the scaled density)
never changes bymore than 2.5% for a variation of n in the range
of 0.513Y0.549. Hence, the radius (or the scaled radius) never
changes by more than 0.85% (due to the Rp � ��1/3 scaling).

5.3. Analytic Treatment of the Dimensionless Equations

Here we derive an approximate analytic solution to the dimen-
sionless equations of planetary structure. The existence and form
of the solution demonstrate why the mass-radius curves for var-
ious planets all look so similar. The good agreement between this
approximate solution and our calculations gives us confidence in
our results.

We first discuss a general analytic solution to equations (1)
and (2), followed by an application to the dimensionless equa-
tions (20) and (21). For most EOSs, equations (1) and (2) cannot
be solved analytically, even given the approximation of zero tem-
perature. We can incorporate two ideas to allow new analytic
progress. First, over a wide range of low pressures below a GPa,
solids and liquids change their densities by a small amount, much
less than 10%. This point enables us to assume an EOS that en-
capsulates the idea of materials that are largely incompressible
over a wide range of low pressures:

� Pð Þ ¼ �0 þ f Pð Þ: ð24Þ

We have shown in x 5.1 that f (P) ¼ cPn is a good approxima-
tion.We further note, however, that in the range of low pressures
we can assume f (P)T�0.

The second point that enables an analytic treatment is that, when
a planet is massive enough that it begins to compress under its
own gravity, the compression is most acute at the planet’s cen-
ter. With these two ideas in mind, we can obtain an approximate

Fig. 16.—Scaled interior structure models for solid exoplanets computed from
the polytropic-like EOSs. (a) Scaled mass vs. fractional scaled radius. (b) Scaled
density vs. fractional scaled radius. (c) Scaled pressure vs. scaled fractional ra-
dius. In all panels the solid, dotted, and dashed lines are for scaled masses of 0.5,
1, and 5, respectively. Three different values of n are used: 0.528 (Fe; black), 0.541
(MgSiO3; light gray), and 0.514 (H2O; medium gray). In all panels the solid and
dotted lines are shown for only a single value of n because the lines for all n overlap.
The scaled interior structure solutions deviate from each other for theMs ¼ 5 model.
[See the electronic edition of the Journal for a color version of this figure.]
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solution to equations (1) and (2) and a mass-radius relationship
for the case of a low-mass, slightly compressed planet.

To zeroth order, �(P) does not depend on P, so we can inte-
grate equations (1) and (2) to find the zeroth-order solutions:

m(r) ¼ 4
3
�r3�0; ð25Þ

P(r) � Pc � 2
3
�Gr2�2

0 : ð26Þ

Here

Pc ¼
2

3
�GR2

p�
2
0 ¼ 3G

8�

M 2
p

R4
p

; ð27Þ

where Mp is the total mass of the planet and Rp is the planet’s
radius.

Nowwe can use the zeroth-order solution forP(r) towrite equa-
tion (24) to first order in the term f (P(r)):

� Pð Þ � �0 þ f P rð Þ ¼ Pc � 2
3
�Gr2�2

0

� �
: ð28Þ

Keeping in mind that the compression is most important in the
center, we expand this expression for � about r ¼ 0, to get an ex-
pression for the density accurate to first order in f (P(r)) and sec-
ond order in r/R:

� � �0 þ f Pcð Þ � 2
3
�Gr2�2

0 f
0 Pcð Þ

	 

: ð29Þ

If the compressed region is confined to small r/R, then we can
use this expression as an approximation for the pressure every-
where in the planet. We can then substitute this expression into
equation (1) and integrate to get

m rð Þ � 4
3
�r3 � Pcð Þ � 2

5
�Gr2�2

0 f
0 Pcð Þ

	 

: ð30Þ

When we evaluate this equation at r ¼ Rp, we find the desired
mass-radius relationship

Mp ¼ 4
3
�R3 � Pcð Þ � 2

5
�GR2

p�
2
0 f

0 Pcð Þ
h i

: ð31Þ

The mean density is

�̄ ¼ � Pcð Þ � 2
5
�GR2

p�
2
0 f

0 Pcð Þ: ð32Þ

We can see that �(Pc) > �̄ > �0, i.e., the mean density is higher
than the zero-pressure density but lower than the density near
r ¼ 0. Also, for high Pc the radius will decrease [this is the case
for f (Pc) ¼ cPn

c , the modified polytropic form in eq. (11)].
We can evaluate equation (32) to first order in f (P(r)) using

equation (27). In other words, the mean density of the planet is
approximately

�̄ ¼ � Pcð Þ � 3
5
f 0 Pcð ÞPc; ð33Þ

where Pc is given in equation (27).
We now apply the above analytic equations (26)Y(33) to our

dimensionless equations. We begin by considering our scaled
EOS as

�s Psð Þ ¼ 1þ Pn
s : ð34Þ

We proceed under the assumption that PsT1 and therefore
Pn
sT1. For the dimensionless equations we find the scaled

pressure

Ps rsð Þ � Ps;c � 2
3
�r2s ; ð35Þ

where

Ps;c ¼ 2
3
�R2

s ; ð36Þ

the scaled approximate density

�s � 1þ Pn
s;c � 2

3
�r2s nP

n�1
s;c

� �
; ð37Þ

the scaled mass

ms rsð Þ � 4
3
�r3s 1þ Pn

s;c � 2
5
�nr2s P

n�1
s;c

� �
; ð38Þ

the desired mass-radius relationship

Ms � 4
3
�R3

s 1þ 1� 3
5
n

� �
2
3
�R2

s

� �n	 

; ð39Þ

and the average density

�̄s ¼ 1þ 1� 3
5
n

� �
2
3
�R2

s

� �n
: ð40Þ

TABLE 4

Conversion Factors for the Scaling Relationships for Equation (23)

Material

m1

(M�)

r1
(R�)

P1

(GPa) k1 k2 k3

Fe(�) (modified polytropic EOS)...................................................... 5.80 2.52 1192 �0.209490 0.0804 0.394

MgSiO3 (perovskite) (modified polytropic EOS)............................. 10.55 3.90 693 �0.209594 0.0799 0.413

H2O (ice) (modified polytropic EOS) ............................................... 5.52 4.43 114 �0.209396 0.0807 0.375

Fe(�) .................................................................................................. 4.34 2.23 . . . . . . . . . . . .

MgSiO3 (perovskite) ......................................................................... 7.38 3.58 . . . . . . . . . . . .

H2O (ice)............................................................................................ 8.16 4.73 . . . . . . . . . . . .
Fe(0.675) /MgSiO3(0.325) ................................................................. 6.41 3.19 . . . . . . . . . . . .

Fe(0.3) /MgSiO3(0.7) ......................................................................... 6.41 2.84 . . . . . . . . . . . .

Fe(0.225) /MgSiO3(0.525) /H2O(0.25) .............................................. 6.41 3.63 . . . . . . . . . . . .

Fe(0.065) /MgSiO3(0.485) /H2O(0.45) .............................................. 6.88 4.02 . . . . . . . . . . . .
Fe(0.03) /MgSiO3(0.22)/H2O(0.75)................................................... 7.63 4.42 . . . . . . . . . . . .

Notes.—The conversion factors give the physical values from the scaled parameters mass, radius, pressure, and density. See eqs. (13)Y(16). The first three
rows of this table additionally give parameters for mass-radius relationships computed from the modified polytropic EOS; these include the ki values for a fit
to eq. (23) valid for Ms > 4.
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Because we chose PsT1 for this analytic derivation, we know
exactly over what range of parameters these approximations
are valid. They apply where PsT1, which is also where RsT1
and MsT1. The correction term in equations (39) and (40)
½(1� 3

5
n)( 2

3
�R2

s )
n	T1. The RsT1 limit therefore shows why

the scaled mass-radius relation depends very weakly on compo-
sition: the correction term in equation (39) is small.

If we consider the scaled mass-radius relationship given by
equation (39) slightly beyond where it is formally valid (Rs < 1
instead of RsT1), we find that it is still a reasonable approxi-
mation. While the scaled mass-radius relationship given by equa-
tion (39) is good to within 1% atMs ¼ 0:245, it is good to within
5% at Ms ¼ 0:36 (compared to the numerical solution to the
scaled equations). Even at Rs � 1, the correction term is never
larger than (1� 3

5
n)(2

3
�)n. Since n ranges typically from 0.5 to

0.6, this maximum value for the correction term ranges from
about 0.997 to 1.013. In other words, even for Rs � 1, the cor-
rection term in equation (39) varies over only a range of about
0.02 as a function of planet chemistry.

Figure 15 compares this analytic mass-radius approximation
to the full numerical solution of the scaled equations, justifying
that our calculations are correct.

6. DISCUSSION

6.1. Exoplanet Mass and Radius Observational Uncertainties

We now discuss the observational uncertainties on the mass
and radius of transiting exoplanets.We adopt a conservative range
for planetmass and radius fractional uncertainty of 2%Y10%.The
10% limit is the uncertainty range for typical exoplanet detections,
arising from measurement uncertainty due to the data quality.
Once discovered, most exoplanets of interest will be followed up
with larger telescopes and/or more observations to refine the
planet mass and radius beyond that determined from the obser-
vational discovery. If measurement uncertainty is not a dominant
factor for planet mass and radius uncertainty, then the stellar
mass and radius uncertainty are. This is because the exoplanet
mass and radius are derived from quantities that involve planet-
star mass or radius ratios. Note that, assuming the stellar noise to
be small, the measurement uncertainty and stellar mass or radius
uncertainty add in quadrature.

Our estimate of the 2% planet mass and radius uncertainty is
based on an optimistic assessment of the 2% stellar mass and
radius uncertainty likely to be possible for millions of stars in the
future. This kind of high-precision measurement will be enabled
with accurate distances and precise stellar fluxes by theGaia space
mission (ESA; launch date 2011). In practice, the radius can be
inferred directly from the stellar fluxes and distances; in princi-
ple, a precise radius is limited by the correction from a measured
stellar flux to the star’s bolometric flux (D. Sasselov 2006, pri-
vate communication). In contrast to our 2% best-case scenario,
current typical stellar mass and radius uncertainties are on the
order of 5%Y10% (Ford et al. 1999;Cody&Sasselov2002; Fischer
& Valenti 2005). These stellar masses and radii are derived from
interior and evolutionmodel fits to observed stellar spectra. Sozzetti
et al. (2007) show that a more precise stellar radius (and hence
planet radius) can be derived using stellar evolution models in
the a/R
 versus Teff parameter space instead of in the usual log g
versus Teff parameter space. This is partly because a/R
 (a mea-
sure of stellar density) can be determined with high precision
from the planet transit light curve for planets with zero orbital
eccentricity (Seager & Mallén-Ornelas 2003). Provided that the
photometry is good enough, few percent uncertainty in star and

planet radii may become routine.We note that a different technique,
interferometry, canmeasure stellar radii directly, but the current un-
certainties aremuch higher than 2%and the technique is limited to a
small number of nearby stars.

Themass determination of low-mass planets by ground-based
radial velocity techniques requires hundreds of observations. Mass
determination for many exoplanets may therefore be inhibited
(Lovis et al. 2006) until a number of dedicated ground-based te-
lescopes are available. Given such limitations of telescope time
and current technology, the optimistic future exoplanet mass un-
certainty range is likely closer to 5%Y10% for the low-mass
solid planets of interest (<20M�). With current technology and
due to the faintness of the host stars, many low-mass exoplanets
discovered from transit surveys (e.g.,COROTorKepler) will not
have measured masses at all. As an example of what it would
take to detect an Earth-mass planet in a 50 day orbit about one of
the brightest Sun-like stars: one 8 m diameter telescope dedi-
cated to five bright stars monitored over five years (R. P. Butler
2006, private communication). Earth-mass planets more distant
from their host stars, such as Earth-like orbits about Sun-like
stars, cannot be detected with any current technology.

6.2. Possible Exoplanet Compositional Distinctions

Given the observational uncertainties, what compositional dis-
tinctions among exoplanets can we make? With an upper limit of
20% on the planet mass uncertainty wewill be able to say robustly
whether the planet is predominantly composed of solids or if it
instead has a significant gas envelope as do Uranus and Neptune.

The following discussion assumes that we can ascertain that
the planet has no substantial atmosphere or envelope that would
contribute to the planet radius.

With a 10% uncertainty we may be able to comment on the
presence of a large amount of water or iron, if the planet for-
tuitously has a very low density or a very high density within the
radius range for solid planets.

A�5% uncertainty will allow us to distinguish among planets
composed predominantly of water ice, predominantly of silicates,
and predominantly of iron (xx 4.1.1 and 4.1.2). These planets are
relatively well separated on the mass-radius diagram (Fig. 4).
Their separation is primarily due to the low density of water ice,
the intermediate density of silicates, and the high density of Fe.
Even with 5% exoplanet mass and radius uncertainties, it is not
possible to identify the detailed composition such as the fraction
of different material in the core and differentiated layers.

Identification of water planets is possible with �5% planet
mass and radius uncertainty if the planet has more than 25%water
ice by mass and plausible iron-to-silicate ratios. With the same
�5% uncertainty, water planets with 50%water bymass with any
iron-to-silicate ratio can be identified. Water exoplanets should
exist; in our own solar system Jupiter’s satellite Ganymede is 45%
water ice by mass. Water ice planets should be the easiest of the
solid exoplanets to detect observationally because of their large
radius for a given planet mass: they could be as large as 3 R� for
Mp ¼ 20 M�. We note that Valencia et al. (2007a) came to the
same conclusion for the one planet mass of which they explored
water compositions, the 7.5 M� GJ 876d. A detection of a low-
density water ice planet orbiting far interior to the expected snow
line in the disk where the planet formed would be strong evi-
dence for planet migration.

With 2% uncertainty in planet mass and radius we would be able
not only to determine the basic composition of any iron/silicate/
water planet but also to constrain the relative fraction of eachma-
terial. However, even with 2% uncertainty in planet mass and
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radius many degeneracies in planet composition remain for a
planet of the same mass and radius. For example, carbon planets
with silicate mantles and iron cores are indistinguishable from
silicate planets with small iron cores, or with planets that have a
small (�10%bymass) fraction of water on top of a silicatemantle
and iron core. As a second example, planets with deep water
oceans (even 100 km deep) on any kind of planet are not iden-
tifiable with even 2% fractional uncertainty in the radius. This is
because a liquid water ocean contributes only a small amount to
the overall planet radius compared to a pure water ice layer. For a
third example, see Figure 6d and the accompanying discussion.
See also Valencia et al. (2007b) for a detailed discussion of
degeneracies in composition for iron-silicate-water planets of
1Y10 M�.

Observational uncertainties in planet mass and radius are un-
likely to be better than a few percent in the next decade. We there-
fore argue that detailed exoplanet interior models are not needed
to infer exoplanet bulk composition. The analytical form derived
in this paper (eq. [23]), with scaling relations provided frommodel
curves (e.g., in Table 4), should be sufficient for the near future.

Exoplanet atmospheremeasurements may inform us about the
planet interior, removing some of the degeneracies in a given
solid exoplanet mass and radius relationship. Therefore, despite
our conclusions that detailed interior planet models are not needed
to determine exoplanet bulk composition, we point out that de-
tailed interior models are required to understand planetary atmo-
spheres. In turn, observations of exoplanet atmospheres may help
us infermore about the exoplanet interior composition.Atmosphere
measurements will also help us to identify interesting features on
planets, such as the presence of a deep liquid ocean. A saturated
water vapor atmosphere would be a better indicator than an exo-
planet mass and radius, considering we cannot identify deep water
oceans with mass-radius relationships.

7. SUMMARY AND CONCLUSIONS

We have modeled cold solid planets of a variety of composi-
tions including iron, silicates, water, and carbon compounds. The
main conclusions of this work are as follows:

1. All solid planets approximately follow the scaled mass-
radius relationship log10Rs ¼ k1 þ 1

3
log10(Ms)� k2M

k3
s for up

toMp ’ 4Ms. This relationship can be scaled to physical units by
the values m1 and r1 given in Table 4. The corresponding planet
mass, in physical units, to which the above mass-radius equation
is valid ranges fromM ¼ 17 M� toMp ¼ 40 M�, depending on
the material (see the m1 values in Table 4).

2. There is no simple power law for the mass-radius relation;
the mass-radius curve slope changes even within a relatively
narrow mass range.

3. We can use the same formalism described in the above equa-
tion to summarize the mass-radius relationships we computed for
differentiated planets, using the scaling parameters listed in Table 4.
Given the uncertainties in the EOSs and the best expected future
observations, this simple, handy approximation supplies enough
detail and accuracy to interpret any forecasted observations.

4. Highly detailed interior planet models are not needed to
infer a solid exoplanet’s bulk composition from its mass and ra-
dius. This is because the temperature structure and phase changes
have little impact on the total planet mass and radius:

a) Low-pressure phase changes (at <10 GPa) are not im-
portant for a planet’s radius because for plausible planet com-
positions most of the mass is at high pressure. For example, 97%
of the planet’s mass is at high pressures (>3 GPa). For high-

pressure phase changes we expect the associated correction to
the EOS (and hence derived planet radii) to be small because at
high pressure the importance of chemical bonding patterns to the
EOS drops.

b) Temperature can be approximated as a thermal pressure
term. This thermal pressure causes a decrease in density of on or-
der 3% or less at relevant temperatures and pressures. A change
in average density of a planet translates into a smaller change in
the planet radius because Rp � �̄�1/3

p . Conceptually, At low pres-
sures (P10 GPa) in the outer planetary layers, the crystal lattice
structure dominates the material’s density and the thermal vibra-
tion contribution to the density is small in comparison. At high
pressures the thermal pressure contribution to the EOS is small
because the close-packed nature of the materials prevents struc-
tural changes from thermal pressure contributions.

5. We identified several interesting properties of exoplanets:

a) Planets are not likely to be found that have radii smaller
than a pure Fe planet. Fe is the most dense element out of which
planets are expected to form. While not a new conclusion, this
point is useful to keep in mind for designing and interpreting
radius observations of exoplanets.

b) Planets above theH2O curvemust have a significant H/He
envelope. We can therefore easily distinguish between exoplanets
with significant H/He envelopes and those without, as is the case
for GJ 436b. We therefore define a ‘‘super-Earth’’ to be a solid
planet with no significant gas envelope, regardless of its mass.

c) Because of their unique position on the mass-radius dia-
gram, H2O planets with more than 25%water ice by mass can be
identified with approximately 5% fractional uncertainty in Mp

and Rp. (A similar conclusion was also found by Valencia et al.
[2007a], that if the 7.5M� planet they modeled has a large water
content, it would be identified by a large radius.) Discovering a
water planet orbiting at a small semimajor axis would serve as
strong evidence for planet migration, since presumably water
planets formmore efficiently far from their host stars, beyond the
ice line. This point is valid provided that the planet is not a car-
bon planet and provided that there is no substantial contribution
to the planet radius from an atmosphere or envelope.

d ) Even with planet mass and radius measurement uncer-
tainties better than 1%, planets of different interior composition
can have the same total mass and radius. In other words, different
mass fractions of iron cores, silicate mantles, andwater outer layers
can have the same total radius for a planet of the same mass.

e) Carbon planets, if they exist, havemass-radius relationships
that overlap with mass-radius relationships of noncarbon planets
(i.e., water and silicate planets). This is because the zero-pressure
density of graphite is similar to that of H2O and the zero-pressure
density of SiC is similar to that of MgSiO3. Exoplanet atmo-
spheres of transiting exoplanets will have to be observed and
studied to distinguish between carbon planets and water/silicate
planets.

6. We conclude that, while detailed interior structure models
are needed to understand the atmosphere formation and evolution,
detailed interior structuremodels are not needed to infer bulk com-
position from exoplanet mass and radius measurements.

We dedicate this study of mass-radius relationships to themem-
ory of our coauthor Cathy Hier-Majumder. It is with great sadness
that we acknowledge her untimely death. We thank Rus Hemley,
Y. Fei, andDan Shim for extremely useful discussions about high-
pressure physics and EOSs.We thankMercedes Lopez-Moralez,
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Dimitar Sasselov, and Jim Elliot for useful discussions about ob-
servational uncertainties.We thank Diana Valencia for providing
a more detailed version of Figure 4 in Valencia et al. (2006), as
well as for interesting discussions about unpublished work. We

thank an anonymous referee for a very careful and helpful review.
This work was supported by the Carnegie Institution of Wash-
ington, the NASA Astrobiology Institute, and the Massachusetts
Institute of Technology.
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