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The single electron transistor and artificial atoms
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Abstract. Modern techniques of lithography make it possible to confine electrons to suf-
ficiently small dimensions that the quantization of both their charge and their energy are
easily observable. When such confined electrons are allowed to tunnel to metallic leads a sin-
gle electron transistor (SET) is created. This transistor turns on and off again every time one
electron is added to the isolated region. Whereas we can understand conventional transistors
using classical concepts, the SET is quantum mechanical in an essential way. In fact, there
is a close analogy between the confined electrons inside an SET and an atom. In this review,
the physics underlying the operation of SETs is explained, a brief history of its invention is
presented, and issues of current interest are discussed.
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1 The physics of single electron transistors

A conventional field-effect transistor, the kind that makes all modern electronics work,
is a switch that turns on when electrons are added to a semiconductor and turns off
when they are removed. These on and off states give the ones and zeros that digital
computers need for calculation. Interestingly, these transistors are almost completely
classical in their physics. Only a few numbers that characterize their behavior are
affected by quantum mechanics. However, if one makes a new kind of transistor, in
which the electrons are confined within a small volume and communicate with the
electrical leads by tunneling, all this changes. One then has a transistor that turns on
and off again every time one electron is added to it; we call it a single electron transistor
(SET). Furthermore, the behavior of the device is entirely quantum mechanical. It is
very appropriate, therefore, to discuss this device on the 100th anniversary of Planck’s
constant.

Various structures have been made in the past two decades, in which electrons are
confined to small volumes in metals or semiconductors. Perhaps not surprisingly, there
is a deep analogy between such confined electrons and atoms. Whereas natural atoms
are studied by adding, removing or exciting electrons with light, these artificial atoms
typically have such small energy scales that they are best studied by measuring the
voltage and current resulting from tunneling between the artificial atom and nearby
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Fig. 1 Schematic drawing of a SET. Wires are connected to source and drain contacts to
pass current through the 2DEG at the GaAs/AlGaAs interface. Wires are also connected to
the confining electrodes to bias them negatively and to the gate electrode that controls the
electrostatic energy of the confined electrons.

electrodes. The reader who is interested in a more thorough discussion of these and
related devices should read one of several review articles. [1–5]

A schematic of one kind of SET is shown in Fig. 1. It consists of a semiconductor, in
this case GaAs, separated from metal electrodes by an insulator, in this case AlGaAs.
The AlGaAs is doped with Si, which donates electrons. These fall into the GaAs, be-
cause their energy is lower in the latter material. The resulting positive charge on the
Si atoms creates a potential that holds the electrons at the GaAs/AlGaAs interface,
creating a two dimensional electron gas (2DEG). The source and drain contacts allow
one to drive electrons from an external circuit through the 2DEG. The 2DEG is con-
fined perpendicular to the GaAs/AlGaAs interface, and the confinement in the other
two directions is accomplished with electric fields imposed by very small confinement
electrodes. A negative voltage on these electrodes creates a potential similar to the
one sketched in Fig. 2; the negative voltage repels electrons from underneath the con-
finement electrodes and creates saddle point potential barriers under the constrictions.
For the remainder of our discussion, we assume that the voltage on these constriction
electrodes is fixed, resulting in a fixed confinement potential. However, the voltage
on an additional electrode, the gate, is varied to adjust the potential of the electrons
confined in the potential well.

Figure 3 shows an electron micrograph of such constriction and gate electrodes for
one of the smallest SETs made in this way so far. [6, 7] The region surrounded by
electrodes appears to be a few hundred nanometers in diameter. However, the droplet
of electrons confined in it is considerably smaller. We estimate that these SETs have
about 50 electrons confined to a droplet about 100 nm in diameter. The GaAs/AlGaAs
structure is grown with molecular beam epitaxy. The electrodes are fabricated using
electron beam lithography.

When the voltage on the gate electrode is increased, the potential minimum, in
which the electrons are trapped, becomes deeper. This causes the number of trapped
electrons to increase. However, unlike a conventional transistor, in which the charge
increases continuously, the charge in the trap increases in discrete steps, and this is
reflected in the conductance between source and drain.
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Fig. 2 Sketch of the electrostatic potential energy experienced by an electron moving at the
interface between GaAs and AlGaAs in Fig. 1.

Fig. 3 Electronmicrograph of the top surface of the SET used in the experiments of
Goldhaber-Gordon et al. [6, 7]. See also Fig. 1.
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Fig. 4 Conductance of a SET as a function of the gate voltage. The spacing between the
peaks is the voltage necessary to add one electron to the artificial atom. These results are
for a device of the kind studied by Meirav et al. [8]

Figure 4 shows the conductance as a function of gate voltage Vg for a SET made
by U. Meirav et al. [8], larger than the one in Fig. 3. The conductance is measured
by applying a very small voltage Vds between drain and source, small enough that
the current is proportional to Vds. As seen in the figure, the conductance increases
and decreases by several orders of magnitude almost periodically in Vg . A calculation
of the capacitance between the gate electrode and the droplet of confined electrons
shows that the voltage between two peaks or two valleys is just that necessary to add
one electron to the droplet. The name “single electron transistor” comes from the
observation that the transistor turns on and off again every time a single electron is
added to it.

For current to flow the number of electrons on the droplet must fluctuate, say
between N and N + 1. Thus the Nth peak in the conductance occurs when the state
of the droplet containing N electrons is in equilibrium with the state containing N +1
electrons. Were the gate the only electrode contributing to the electrostatic energy of
the droplet, the gate voltage at which the Nth peak occured multiplied by the charge
of the electron e would be the energy difference between the two states. Since there
are several electrodes near the droplet, the energy change caused by Vg is αeVg where
α = Cg/C is the ratio of the gate capacitance to the total capacitance. Therefore, a
conductance peak occurs when

αeVg(N) = E(N + 1)− E(N), (1)

apart from a constant, where E(N) is the total energy of the droplet with N electrons.
Thus, predicting the position of the Nth peak in Fig. 4 requires a model for the total
energy of an artificial atom with N electrons.

There are several levels of sophistication with which such models have been de-
veloped. The simplest is called the Coulomb blockade model, and treats the droplet
of confined electrons as a metal particle. Think about how an electron tunnels from
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one lead onto the metal particle and then onto the other lead. Suppose the particle is
neutral to begin with. To add a charge Q to the particle requires energy Q2/2C, where
C is the total capacitance between the particle and the rest of the system. Setting
Q = −Ne in Eq. 1 gives values of the peak positions that are equally spaced in gate
voltage with separation ∆Vg = e/Cg.

This result is a direct consequence of the charge quantization. Taking E(Q) =
Q2/2C means that the energy as a function of Q is a parabola with minimum at Q0.
By varying Vg we can choose any value of Q0, the charge that would minimize the
energy, were not the charge quantized. However, because the real charge is quantized,
only discrete values of the energy E are possible. When Q0 = −Ne, for which an
integer number N of electrons minimizes E, the Coulomb interaction results in an
energy difference U = e2/2C for increasing or decreasing N by one. There is thus
an energy gap that suppresses charge fluctuations. For all values of Q0 except Q0 =
−(N + 1/2)e there is a smaller, but non-zero, energy gap for adding or subtracting
an electron. Under these circumstances no current can flow at temperature T = 0.
However, when Q0 = −(N + 1/2)e the state with Q = −Ne and that with Q =
−(N + 1)e are degenerate; the charge fluctuates between the two values even at zero
temperature. Consequently, the energy gap disappears and current can flow. The
peaks in conductance are, therefore, periodic, occurring whenever the average charge
on the artificial atom is Q0 = −(N + 1/2)e.

Thus the approximately equally spaced peaks in conductance of the SET results
from quantization of charge. But under what conditions is charge quantized? This may
seem like a silly question. Since the discovery of the electron we have known that its
charge is quantized. However, because the wavefunctions of electrons in conductors are
extended over macroscopic distances, the charge in any small volume is not quantized.
It is the localization of electrons to a small region of space that quantizes their charge.

However, the degree of localization depends on the transmission of the tunnel
barriers. A very elegant argument tells us how resistive the tunnel barriers must be for
charge quantization. One simply demands that the RC time constant for an electron
to tunnel off the droplet into the leads be great enough that the energy uncertainty
is less than the charging energy. If the tunneling resistance is R, this condition is
RC > h/U or approximately R > h/e2, the fundamental unit of resistance that enters,
for example, in the quantum Hall effect. Thus, while the calculation of the charging
energy is entirely classical, Planck’s constant determines whether the charging energy
is present or not. This condition is valid at T = 0, independent of C and therefore
of the size of the artificial atom. Of course, thermal charge fluctuations can overcome
this localization, so charge quantization is observable only at temperatures kT < U ,
which means that it is easier to see the effects in smaller artificial atoms, which have
larger U .

In addition to charge quantization, energy quantization is important when elec-
trons are confined to small volumes. Interestingly, the criterion for charge and energy
quantization at T = 0 are exactly the same. Whereas U is the energy to add an
extra electron to the artificial atom, there is a typical level spacing ∆ε necessary to
excite the artificial atom with fixed number of electrons. Furthermore, the levels of
the artificial atom are not perfectly sharp, but rather have typical width Γ. The level
width is caused by lifetime broadening, because an electron in a level on the artificial



890 Ann. Phys. (Leipzig) 9 (2000) 11–12

atom can tunnel into the leads. Alternatively, one can say that the eigenstates of the
system are mixtures of localized states on the artificial atom and extended states in
the leads.

Clearly, energy quantizationmeans that ∆ε > Γ. FollowingThouless [9] the current
through the SET for a single quantum level is the charge of the electron divided by the
time t for an electron in a single quantum state to traverse the artificial atom while in
that level. If (dN/dε) is the density of states in the artificial atom, then (dN/dε)eVds

is the number of current-carrying channels between the Fermi energy in the source
and that in the drain. Thus, the current is given by

I =
e

t

dN

dε
eVds. (2)

The width gives the traversal time, t = h/Γ and (dN/dε) = 1/∆ε, so the condition for
energy quantization is R = Vds/I > h/e2, the same as for charge quantization.

However, while the conditions for charge and energy quantization at zero temper-
ature are the same, charge quantization often survives to higher temperatures. The
charge quantization can be observed when kT < U , but energy quantization requires
kT < ∆ε. Since U > ∆ε for most SETs made to date, energy quantization is more
difficult to observe than charge quantization.

Energy quantization can be observed by measuring the variations between peak
positions for data like those in Fig. 4. Alternatively, the energy level spectrum can
be measured directly by observing the tunneling current at fixed Vg as a function of
Vds. Suppose we adjust Vg so that Q0 = −Ne and then begin to increase Vds. The
Fermi level in the source rises in proportion to Vds relative to the drain, so it also rises
relative to the energy levels of the artificial atom. Current begins to flow when the
Fermi energy of the source is raised just above the first quantized energy level of the
atom. As the Fermi energy is raised further, higher energy levels in the atom fall below
the Fermi energy, and more current flows because there are additional channels for the
electron to use for tunneling onto the artificial atom. One measures the energies by
measuring the voltage at which the current increases, or, equivalently, the voltage at
which there is a peak in the derivative of the current dI/dVds.

One of the most beautiful experiments of this kind is shown in Fig. 5. [10] This is
for an SET made in a very different way from that in Fig. 1, such that the confining
potential is almost perfectly circular. The diamonds with very low differential con-
ductance are regions where only one charge state is stable. Data like those in Fig. 4
would be obtained by moving along the vertical axis at Vds = 0. The boundary of the
diamonds corresponds to the threshold for changing the charge of the artificial atom.
One can overcome the charging energy by changing the source-drain voltage as well
as by changing Vg.

The diagonal lines outside the diamonds correspond to excited energy levels of the
artificial atom. In this case, the artifical atom is so small that ∆ε ∼ U so the peak
spacings at Vds = 0 are far from constant and reflect the shell structure of the artifical
atoms. One can even see the effects of exchange, that is, the filling follows Hund’s
rule, making certain values of N more stable than others.

So far we have identified three different energy scales that are important in under-
standing SETs: U , ∆ε and Γ. These are the typical energies, respectively, to add an
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Fig. 5 Differential conductance on a gray scale as a function of both gate and drain-source
voltage. The dark diamonds correspond to regions in which there is a gap to current flow. For
a SET made of metal all diamonds would have identical size and there would be no variations
of conductance outside the diamonds. Semiconductor SETs have diamonds of different sizes
and peaks in differential conductance outside the diamonds, corresponding to excited states.
These results are from Kouwenhoven et al. [10] who have made SETs so perfect that shell
structure gives more stability (larger diamonds) for the electron numbers indicated.
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electron to the artificial atom, to excite the artificial atom with a fixed number of elec-
trons and the broadening of the artifical atom’s energy levels by quantum mechanical
tunneling to the leads. Although the Coulomb blockade model is often adequate to
estimate U , we know that it, like ∆ε and Γ has a quantum mechanical origin. There
is one last energy scale that is even smaller than these three. The tunneling results
in a kind of chemical bond between the artificial atom and the leads when the artifi-
cial atom has a spin. This is the origin of the Kondo effect, usually associated with
magnetic impurities in metals. The Kondo “bond” is very weak in SETs, and was
not observed for nearly a decade after theorists predicted it. [11] However, it has now
been identified in a number of experiments [6, 7, 12–14], and is the subject of intense
experimental and theoretical research.

2 History of the SET

The effects of charge quantization were first observed in tunnel junctions containing
metal particles as early as 1968 [15]. Later, the idea that the Coulomb blockade can
be overcome with a gate electrode was proposed by a number of authors [16–19], and
Kulik and Shekhter [20] developed the theory of Coulomb-blockade oscillations, the
periodic variation of conductance as a function of gate voltage. Their theory was
classical, including charge quantization but not energy quantization. However, it was
not until 1987 that Fulton and Dolan [21] made the first SET, entirely out of metals,
and observed the predicted oscillations. They made a metal particle connected to
two metal leads by tunnel junctions, all on top of an insulator with a gate electrode
underneath. Since then, the capacitances of such metal SETs have been reduced to
produce very precise charge quantization.

The first semiconductor SET was fabricated accidentally in 1989 by Scott-Thomas
et al. [22] in narrow Si field effect transistors. In this case the tunnel barriers were
produced by interface charges. Shortly thereafter Meirav et al. [8] made controlled
devices of the kind depicted in Fig. 1, albeit with an unusual heterostructure with
AlGaAs on the bottom instead of the top. In these and similar devices the effects
of energy quantization were easily observed. [23–25] Only in the past few years have
metal SETs been made small enough to observe energy quantization. [26] Foxman
et al. [24] also measured the level width Γ and showed how the energy and charge
quantization are lost as the resistance decreases toward h/e2.

In most cases the potential confining the electrons in a SET is of sufficiently low
symmetry that one is in the regime of quantum chaos: the only quantity that is
quantized is the energy. In this case there is a very sophisticated approach, based in
part on random matrix theory, for predicting the distributions of peak spacings and
peak heights for data like those in Fig. 4. [27–29] There are challenging problems in
this arena that are still unsolved. In particular, there is great interest in how the
interplay of exchange and level spacing determines the spin of a small metal SET. [30]

As already mentioned, the data of Fig. 5 are for an SET of sufficiently high symme-
try that angular momentum in the plane of the 2DEG is conserved, so shell structure
is apparent. Another way to eliminate the scattering that destroys angular momentum
conservation is to apply a magnetic field perpendicular to the 2DEG. At sufficiently
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high fields elegant patterns are seen in the single-electron-peak positions as a function
of field. [31]

The evolution of Coulomb charging peaks with magnetic field have been interpreted
with various degrees of sophistication, imitating the development of the theory of
atoms. First one tries the “constant interaction model” in which electrons are treated
as independent except for a constant Coulomb charging energy. This gives only a
qualitative picture of the physics. In order to be quantitative, one needs to at least
treat the electron-electron interactions self-consistently (analogous to the Thomas-
Fermi model) [32], and for some cases one needs to include exchange and correlations.
In particular, it is found that electrons in an SET undergo a series of phase transitions
at high magnetic field. [33]. One of these is well described by Hartree-Fock theory, but
others appear to require additional correlations.

The future of research on SETs looks very bright. There are strong efforts around
the world to make the artificial atoms in SETs smaller, in order to raise the tem-
perature at which charge quantization can be observed. These involve self-assembly
techniques [34] and novel lithographic and oxidation methods [35] whereby artificial
atoms can be made nearly as small as natural ones. This is, of course, driven by an
interest in using SETs for practical applications. However, as SETs get smaller, all of
their energy scales can be larger, so it is very likely that new phenomena will emerge.
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